Multi-Layer Ceramic Fuel Cells BAA

"Tape Calendering Manufacturing Process for Multi-Layer Thin-Film Solid Oxide Fuel Cells"

Honeywell International, Inc.

Torrance, CA

Contract: DE-AC26-00NT40705

PI: Dr. Nguyen Minh

Funding: \$1.4M DOE

+ \$0.4M Non-DOE Share

= \$1.8M

Image Courtesy of Honeywell

Honeywell Project Description

- Investigate a tape calendering process for fabricating multiple layers of cell components for a unitized solid-oxide fuel cell.
- Investigate design and fabrication of the interconnect housing and the gas flow manifolds for the unitized solid-oxide fuel cell.
- Design an optimized high-volume manufacturing process around tape calendering for unitized solid-oxide fuel cells.
- Develop destructive and non-destructive evaluation techniques to characterize & evaluate key cell and component parameters.
- Test and evaluate unitized cells under a range of conditions.
- Prepare a business plan emphasizing commercialization of the tape calendering manufacturing process.

Honeywell Project Objectives & Milestones

- Establish a Cost-Effective Production Process
- Attain High-Performance for the Unitized Cell below 800 °C
- Improve Cell Electrochemical & Thermal Cyclic Performance
- -Improve Cell Flatness
- -Improve Mechanical Properties

		2000	2001			2002				2003		
Phase	Task	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
I	Design & Mfg Assessment											
II	Mfg Cost Study		—									
	Cell Config & Mfg Feasibility											
	Mfg Process Development											
	Preliminary Testing											
II	Demonstration Testing			,		_		_				
	Business Plan											

Honeywell Significant Accomplishments

- \$146/kW estimated at 250 mW/yr production volume
 - 5-kW stacks complete with manifold, insulation & housing
- Tripled cell peak power density at 650 °C
 - 0.89 W/cm² versus 0.24 W/cm² for baseline Cell
- Validated Biaxial Flexure Strength Test Technique
- Anode Mechanical Strength Increased ~3X
 - 325 Mpa versus 111 Mpa for baseline anode
- Defined 2 Parameters from 7 as Key to Cell Flatness
- Manufacturing Cost Study Completed

